Lesson 8. Derivatives and Integrals of Vector Functions

0 Warm up

Example 1. Find these derivatives and integrals.

a.
$$\frac{d}{dt}(1+t^3) =$$

$$d. \int 2t \ dt =$$

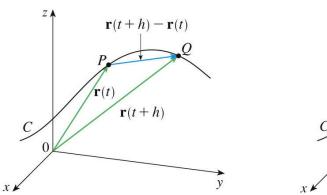
b.
$$\frac{d}{dt}(\cos 2t) =$$

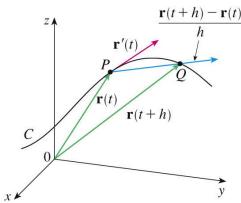
e.
$$\int 2\cos t \ dt =$$

c.
$$\frac{d}{dt}(te^{-t}) =$$

f.
$$\int_0^{2\pi} 3 dt =$$

1 In this lesson...


- What are the derivatives and integrals of vector functions?
- How can find the length of an arc?


2 Derivatives

• The **derivative** of \vec{r} is

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

• Note: the derivative of a vector function is also a vector

- Let *C* be the curve defined by \vec{r}
- Let $\vec{r}(t)$ be the position vector of P
- The derivative $\vec{r}'(t)$ is the direction vector of the line <u>tangent</u> to C at P
 - \Rightarrow Sometimes we refer to $\vec{r}'(t)$ as the **tangent vector**

	S					
$f\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$	\rangle , where f , g , and h	are differentia	ble function	s, then		
nple 2. Find the derivative of \vec{r}	$E(t) = \langle \cos 2t, 1 + t^3, $	$te^{-t}\rangle$.				
Find the unit tangent vo	ector at the point wh	here $t = 0$.				
aple 3. Find parametric e	equations for the tang	ent line to the c	curve given b	$\mathbf{v}\vec{r}(t) = \langle \mathbf{c} \rangle$	os t , sin t ,	<i>t</i>) at point (0
n ple 3. Find parametric e	equations for the tang	ent line to the c	curve given b	$y\vec{r}(t) = \langle c$	os t , sin t ,	<i>t</i>) at point (0
nple 3. Find parametric e	equations for the tang	ent line to the c	curve given b	$y\vec{r}(t) = \langle c$	os t , sin t ,	t angle at point $(0$
nple 3. Find parametric e	equations for the tang	ent line to the o	curve given b	$y\vec{r}(t) = \langle c \rangle$	$\cos t$, $\sin t$,	t) at point (0
nple 3. Find parametric e	equations for the tang	ent line to the o	curve given b	$y\vec{r}(t) = \langle c \rangle$	$\cos t$, $\sin t$,	
nple 3. Find parametric e	equations for the tang	ent line to the c	curve given b	$y\vec{r}(t) = \langle c \rangle$	os t , $\sin t$,	

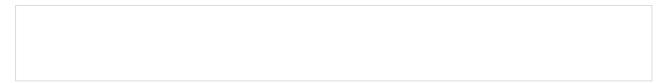
• Differentiation rules:

$$\frac{d}{dt}(\vec{u}(t) + \vec{v}(t)) = \vec{u}'(t) + \vec{v}'(t) \qquad \qquad \frac{d}{dt}(\vec{u}(t) \cdot \vec{v}(t)) = \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t)
\frac{d}{dt}(c\vec{u}(t)) = c\vec{u}'(t) \qquad \qquad \frac{d}{dt}(\vec{u}(t) \times \vec{v}(t)) = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)
\frac{d}{dt}(f(t)\vec{u}(t)) = f'(t)\vec{u}(t) + f(t)\vec{u}'(t) \qquad \qquad \frac{d}{dt}(\vec{u}(f(t))) = f'(t)\vec{u}'(f(t))$$

3 Integration

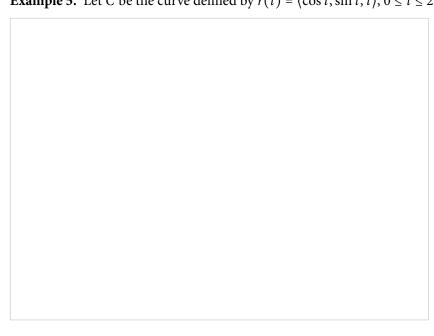
• Let *f* , *g* , and *h* be continuous functions

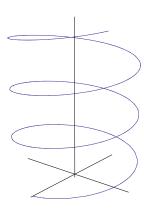
•	The indefinite integral of a vector function $r(t) = \langle f(t), g(t), h(t) \rangle$ is						


• The **definite integral** of a vector function $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ from a to b is

• Note: the integral of a vector function is also a vector

Example 4. Let $\vec{r}(t) = \langle 2\sin t, 2\cos t, 2t \rangle$. Find $\int_0^{\pi/2} \vec{r}(t) dt$.


4 Arc length


- Let *C* be a curve with vector equation $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, $a \le t \le b$
- What is the length of C?
- The **arc length** of *C* is

• Similar for curves in 2D

Example 5. Let *C* be the curve defined by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$, $0 \le t \le 2\pi$. Find the length of *C*.

Example 6. Let *C* be the curve defined by $\vec{r}(t) = \langle 1, t^2, t^3 \rangle$, $0 \le t \le 1$. Find the length of *C*.